

Impiega la tecnologia GSM per il tuo telecontrollo

Le schede Parsic serie Arethusa, permettono la gestione e il telecontrollo a distanza delle vostre installazioni elettriche.

Applicazioni:

Impianti elettrici domotici Impianti elettrici terziario e agricoltura Impianti elettrici produzione fotovoltaico ed eolico

Switch	Room	Comfort	Lights	Blinds	Alarms	Dorbell	Wi-Fi	Lock	HiFi
	•	J		Ē	(@)	\bigcirc	·jj	•	0

Tipo di prodotto

Scheda GSM per telecontrollo basata sul processore ATMEGA328P TQFP, Arduino Nano. Impieghi OEM per Build Automation. Installazione su barra DIN1040. Prodotto OTP, firmware protetto non accessibile dall'utilizzatore.

V31GSM è un prodotto OEM Parsic Italia. Si installa in quadri elettrici protetti quale componente ausiliario adibito a telecontrollo.

Caratteristiche tecniche V31GSM

Applicazioni:

- Build Automation
- Telecontrolli

Alimentazioni

- Ingresso 12,7V 500 mA ingresso protetto
- Alimentatore ausiliaria con batteria piombo 6Ah 12Vcc
- Uscite 12V 5V 1A per sensori esterni

Ingressi/Uscite

- 6 linee digitali opto con segnalazioni led
- 6 uscite digitali relè 10 Amp. con segnalazioni led
- 6 ingressi analogici protetti, risoluzione 10 bit

Segnalazioni Led

LED	Descrizione	Note
LD1 Rosso	Power input 12,7Vcc	Modulo DC-DC
LD2 Rosso	ТХ	Arduino Nano UART
LD3 Rosso	RX	Arduino Nano UART
LDI1 Rosso	Digital Input 1	Ingresso 1
LDI2 Rosso	Digital Input 2	Ingresso 2
LDI3 Rosso	Digital Input 3	Ingresso 3
LDI4 Rosso	Digital Input 4	Ingresso 4
LDI5 Rosso	Digital Input 5	Ingresso 5
LDI6 Rosso	Digital Input 6	Ingresso 6
LDO1 Verde	Digital Output 1	Relè 1
LDO2 Verde	Digital Output 2	Relè 2
LDO3 Verde	Digital Output 3	Relè 3
LDO4 Verde	Digital Output 4	Relè 4
LDO5 Verde	Digital Output 5	Relè 5
LDO6 Verde	Digital Output 6	Relè 6
LD05 Rosso	GSM	Status GSM
LD06 Rosso	GSM	Net
LD03 Rosso	GSM	PWR

Scheda V31GSM

La scheda si compone di tre parti essenziali:

- Supporto PCB per i componenti passivi, attivi, alimentatore
- Arduino NANO installato su zoccolo specializzato
- Scheda GSM SIM900 Quad-Band 850/900/1800/1900MHz.
- Supporto plastico per aggancio guida DIN (opzionale)

Configurazione degli I/O di sistema.

- Ingressi digitali optoisolati (6), con attivazione NPN/PNP 12V. Alimentazione ingressi digitali da alimentatore ausiliario isolato, oppure dallo stesso alimentatore della scheda.
- Ingressi analogici protetti (6). Massima tensione applicabile 10Vcc.
- Uscite relè (6), contatto NANC deviato. Massima corrente applicabile 10A, 220VAC1
- Connettore alimentazione per ingresso 12,7V.
- Uscita ausiliaria 12V 1A, uscita ausiliaria 5V 1A, ingresso batteria 12V esterna.
- Ricarica batteria 12V, con limitatore di corrente 500mA

Configurazione del modulo Nano

Il modulo NANO installato a bordo, è predisposto per essere connesso alla porta del PC e può essere configurato, con apposito applicativo in dotazione, per le esigenze dell'utilizzatore.

Avviso importante

Non tentare di riprogrammare il modulo Nano con l'IDE di Arduino. Un tentativo di riprogrammazione, comporta la perdita dei dati e l'impossibilità di configurazione attraverso il programma fornito in dotazione al dispositivo.

L'utente, per configurare il modulo Nano, dovrà scollegare lo stesso dal supporto, estraendolo con attenzione. Lo collegherà alla porta USB e, dopo aver lanciato il programma "GSM Home Automation, procederà alla programmazione delle funzioni che desidera realizzare.

<u>Settaggi</u>

Non sono previsti particolari set hardware per la scheda. In elenco sono indicati alcuni particolari della scheda V31GSM:

- In area GSM, in alto a destra sul pcb, è posizionato l'interruttore jumper, Power Switch. Aprire il ponte solo in caso di manutenzione del modulo GSM.
- In area GSM, lato saldature, assicurarsi che il ponte PC5 sia chiuso con una goccia di stagno.
- Il modulo Nano è inserito con la presa USB rivolta verso il bordo scheda. *Nella sola fase di programmazione*, estrarre il modulo dallo zoccolo e collegarlo alla presa USB del PC. Al termine della programmazione, ricollocarlo nella precedente posizione.

Modulo Nano. Avviso importante

Prima di inserire il modulo Nano nel supporto, assicurarsi che l'alimentazione sia spenta. L'orientamento del modulo corrisponde al profilo della serigrafia sulla V31. *I pin D12 e D13 del Nano corrispondono alle tre frecce disegnate nella serigrafia*. Inserire lentamente il modulo nel supporto e controllare con attenzione le connessioni. *Soltanto dopo i controlli*, alimentare la scheda. <u>Non invertire il</u> <u>senso di inserzione del modulo Nano</u>

Alimentazione

La scheda si alimenta con una sorgente esterna a 12,7Vcc 3A. A bordo è installato un convertitore DC/DC 5V di tipo switching, in grado di supportare gli spunti di corrente richiesti dal modulo GSM in fase di trasmissione. È possibile collegare una batteria esterna a piombo da 12V 6Ah, in grado di sopperire alla mancanza di tensione di alimentazione. La ricarica della batteria avviene a tensione costante, con limitazione della corrente di carica a circa 500mA. Il dispositivo "polyswitch" protegge il circuito di alimentazione in caso di superamento della soglia di carica della batteria.

Morsetto	Descrizione	Note
M3-1	GND	
M3-2	GND	
M3-3	12,7V+ IN	
M3-4	12V+ OUT	
M3-5	5V 1A	
M3-6	GND	
M3-7	GND	
M3-8	12V+ BATTERIA	

Linee digitali I/O della scheda V30

Gli ingressi digitali sono di tipo **NPN/PNP** e sono collegati ai **PORT D** del modulo Nano. Applicando al morsetto **M1-Com** la polarità positiva, prelevata da un qualsiasi alimentatore ausiliario da **12Vcc**, e applicando l'altra polarità negativa ad uno degli ingressi digitali compresi tra **D1 e D6** sarà attivato il relativo ingresso digitale. La stessa operazione come ora descritta, può essere ripetuta invertendo le polarità degli ingressi digitali al morsetto **M1-Com**. È ammessa una sola tipologia d'ingresso alla volta. Ad ogni attivazione corrisponde la relativa **segnalazione LED** e ogni linea di input è galvanicamente isolata dal resto del circuito.

Collegamento degli ingressi digitali optoisolati

In caso di funzionamento della scheda in ambienti "*elettricamente rumorosi*" la tensione di alimentazione degli optoisolatori può essere separata dalla tensione di alimentazione della scheda.

Morsetto	Descrizione	Note
M1-1	Ingresso digitale 1 PD2	Ingresso NPN/PNP
M1-2	Ingresso digitale 2 PD3	Ingresso NPN/PNP
M1-3	Ingresso digitale 3 PD4	Ingresso NPN/PNP
M1-4	Ingresso digitale 4 PD5	Ingresso NPN/PNP
M1-5	Ingresso digitale 5 PD6	Ingresso NPN/PNP
M1-6	Ingresso digitale 6 PD7	Ingresso NPN/PNP
M1-7	Comune +/-	Si collega a una fonte di alimentazione esterna con polarità
M1-8	Comune +/-	positiva o negativa (ingressi NPN/PNP)

Uscite digitali

Le uscite digitali sono collegate ai **PORT B** del modulo Nano che attraverso un buffer **ULN2003** alimentano i relè con bobine a 12V. Questi relè azionano un contatto commutato (SPDT) e possono sopportare correnti fino a **10 Ampere in modalità AC1** (Cosphi=1). Lo stato **ON** delle uscite digitali sono segnalate con **LED** di colore verde.

Ingressi analogici

Gli ingressi analogici sono collegati al morsetto **M2**, (Analog **Inputs**) ai terminali **A1-A6** e Possono ricevere una tensione compresa tra **0 e 10Vcc**. Una rete di diodi e resistenze protegge gli ingressi da inversioni di polarità, sovratensioni e transienti.

Modulo GSM SIM900

Si tratta di un modulo quadribanda funzionante su frequenze di 850/900/1800/1900 MHz e integra un processore AMR926EJ-S. Eroga fino a 2W di potenza RF in classe 4 e 1 W in classe 1. Dispone di quattro pin-strip per le connessioni con il circuito base del telecontrollo. È alimentato a 5V e si connette alla linea seriale RS232 del microcontrollore. La modalità di trasmissione si attiva automaticamente dalla linea PC5 che deve essere abilitata alla connessione ponticellando i pad PC5 posti sul lato saldature della scheda. Installare la SIM card nell'apposito cover collocato sul lato saldatura della scheda.

Standard Command Set

Il software implementato per la scheda V31GSM permette di realizzare semplici sistemi di controllo senza la stesura di codice, ma attraverso semplici operazioni di configurazione attuabili attraverso un applicativo per PC. La scheda V31GSM nasce per rispondere, innanzitutto, ad una serie di comandi SMS standardizzati per il controllo delle sue funzionalità di I/O. Nella tabella seguente vengono riassunti tutti i comandi implementati. Si tenga presente che l'effettiva esecuzione degli stessi dipende da due fattori essenziali:

• Il numero dal quale viene inviato l'SMS contenente il comando deve essere abilitato a farlo (cioè deve essere un numero Master o un numero User della scheda)

Tipo di comando	Descrizione	Esempio
Dn ON	Attiva il relè sul canale n	D1 ON
Dn OFF	Disattiva il relè sul canale n	D3 OFF
DnPxxxxx	Attiva il relè n per un tempo pari a xxxxx centesimi di secondo.	D1P100 (impulso di 1 secondo)
DnDRxxxxx	Attiva il relè n dopo un tempo pari a xxxxx secondi	D2DR60 (attiva il relè 2 dopo 1 minuto)
DnDFxxxxx	Disattiva il relè n dopo un tempo pari a xxxxx secondi (1h=3600s)	D343200 (disattiva il relè 3 dopo 12 ore)
Dn?	Richiede lo stato dell'ingresso digitale n. Risposta: "Dn ON" / "Dn OFF"	D5?→ D5 OFF
An?	Richiede la lettura di un ingresso analogico e restituisce il valore condizionato. Risposta: [Label n]: xxx.xx [Unit n]	A3?→ Temp1: 23.5 °C
NOTA: "n" indica	un numero di canale, x indica una cifra numerica riferita a un argomento, $ - \!$	risposta

• L'interfaccia di ingresso o uscita, oggetto del comando, deve essere abilitata.

Installazione dell'applicativo di configurazione

L'applicativo di configurazione, denominato *GSM Home Automation Interface*, deve essere installato su un PC Windows XP SP3 o successivo sul quale deve essere presente il *.NET framework versione 4*. Nel caso quest'ultimo componente non sia presente, è necessario provvedere allo scaricamento dello stesso dal sito della Microsoft e alla sua installazione. L'installazione di *GSM Home Automation Interface* può essere inizializzata eseguendo il file Setup.exe; un breve wizard guiderà l'utente fino ad installazione avvenuta. L'intero processo non durerà più di qualche minuto.

Una volta installato l'applicativo, se non lo si è già fatto in precedenza, si deve provvedere all'installazione dei driver di Arduino. I driver di cui sopra possono essere localizzati avviando GSM Home Automation Interface e cliccando sul pulsante "Go to drivers directory" della finestra "Launcher".

Vediamo, qui di seguito, in dettaglio tutte le operazioni da compiere.

<u>Software</u>

Nella maggioranza delle interfacce commerciali, la programmazione del modulo GSM avviene via SMS. L'utilizzatore è in grado di modificare, gestire i comandi e le segnalazioni attraverso messaggi SMS. Diversamente, la scheda V31 GSM si programma attraverso il software GSM Home Automation che permette di predisporre il funzionamento del telecontrollo secondo le necessità dell'utente, evitando l'impiego di SMS. Come prima operazione, è *assolutamente necessario estrarre il modulo Nano* dalla scheda V31 e collegarlo, attraverso il cavo in dotazione, a una presa USB del PC. Avviare, dopo, il programma GSM Home Automation.

Aprendo la pagina V31 GSM configuration Tool, nel primo riquadro in alto al centro, sono indicate le seguenti attività:

- Il numero della porta a cui si è connessi
- Lo stato della connessione (Com status)
- Lo stato della connessione al microcontroller (Linked)

Dal riquadro "Config" possiamo accedere alla configurazione vera e propria dell'interfaccia, azionando uno alla volta i pulsanti:

- Basic Function Configurator
- SIM and Numbers Configurator
- Custom Command Configurator
- Events Configurator

Partiamo dalla prima funzione: Basic function configurator (configurazione base)

A1	A2	A3	A4	A5	A6	A7	A8
Gain:	Gain:	Gain:	Gain:	Gain:	Gain:	Gain:	Gain:
1	1	1	1	1	1	1	1
Offset:	Offset:	Offset:	Offset:	Offset:	Offset:	Offset:	Offset:
0	0	0	0	0	0	0	0
Label:	Label:	Label:	Label:	Label:	Label:	Label:	Label:
AN1	AN2	AN3	AN4	AN5	AN6	AN7	AN8
Unit:	Unit:	Unit:	Unit:	Unit:	Unit:	Unit:	Unit:
V	V	V	V	V	V	V	V
Analog IN poll ena	able						
A1 poll EN	A2 poll EN	A3 poll EN	A4 poll EN	A5 poll EN	A6 poll EN	A7 poll EN	🛛 A8 poll EN
Digital IN poll enal	ble						
🔽 D1 poll EN	D2 poll EN	D 3 poll EN	D4 poll EN	D5 poll EN	D6 poll EN	D7 poll EN	V D8 poll EN
Digital OUT enabl	e						
D1 OUT EN	D2 OUT EN	🔽 D3 OUT EN	D4 OUT EN	🔽 D5 OUT EN	🔽 D6 OUT EN	🔽 D7OUT EN	D8 OUT EN

Ingressi Analogici

Nella prima sequenza in alto, sono predisposti i riquadri relativi alle linee analogiche. La scheda V31 ne prevede 6, liberamente collegabili a sensori o sorgenti DC, che erogano tensioni da 0 (zero) fino a 10 V. Possono essere sensori di temperatura, tensione, corrente o qualsiasi altro accessorio simile. I riquadri A1-A8 permettono di configurare il condizionamento dei singoli canali analogici, secondo la formula:

Valore Condizionato = (Tensione in ingresso * Gain) – Offset

Inoltre, ad ogni canale verrà associata una etichetta "Label" e una unità di misura "Unit". Esempio: voglio condizionare un trasduttore di temperatura con uscita in tensione lineare tra 0 e 50 °C, sapendo che genererà in uscita 3V a 0°C e 7V a 50°C. Imposterò: Label: "Temp1" Unit: "°C" Gain: (50-0) °C / (7-3) V = 12.5 Offset: 12.5*3 = 37.5

Non desiderando il condizionamento del segnale, lasciare le impostazioni del canale come da default.

Ingressi Digitali

Seguono i riquadri relativi le linee digitali d'ingresso "Digital IN pool enable" e linee digitali d'uscita "Digital out enable". Attraverso i comandi del riquadro *Digital IN pool enable*, è possibile attivare o disattivare le funzionalità di ogni singolo canale, che prevede una risposta SMS contenente lo stato di un particolare ingresso digitale.

I comandi del riquadro *Digital OUT enable*, sono attivati o disattivati in base alle esigenze operative dell'impianto che si desidera controllare.

Gli ingressi digitali sono optoisolati e possono essere attivati sia con segnali di tipo PNP che NPN. La tensione d'ingresso massima ammessa è 10V.

SIM and Numbers Configurator

La seconda configurazione permette di impostare:

- Il codice PIN della SIM utilizzata (se necessario)
- I numeri di telefono che il dispositivo deve considerare al fine della ricezione dei comandi, suddivisi nei due gruppi "Master" e "User". Se tutti i numeri possono essere accettati (qualsiasi numero in arrivo al GSM) inserire in un campo il carattere speciale" *".
- I comandi da eseguire nel caso di ricezione di una chiamata master ed in caso di ricezione di una chiamata user.

La stringa da inserire in questi due campi (opzionale) dovrà essere nel formato di un comando standard (vedi sezione Standard Command Set) oppure può essere nella forma di un comando personalizzato.

IN Code				
12345678	(4 to 8 digits)		
Master Numbers		OK		
3401 <mark>23456</mark> 7				
3331234567		Default		
User Numbers				
1234567890	1234567	890 123456789	0	
		ÀD4 ON		
Call Commands				
Master number call	command	DIP100		
User number call command		D1P100		

Nei campi "Call Commands", andrebbe inserito il codice per l'esecuzione di un determinato comando, al momento della ricezione di una chiamata da parte del numero Master o User. Ad esempio, potrebbe essere quella relativa all'apertura del cancello motorizzato attraverso il codice D1P100: attiva il relè 1 per un secondo. Lasciare gli spazi vuoti se non si vuole attivare questa opzione.

Personalizzare i comandi

Un comando personalizzato non è altro che un alias di un comando standard: ogni volta che la scheda V31GSM si troverà ad eseguire un *comando personalizzato*, non farà altro che sostituirlo con l'equivalente comando standard impostato in questa maschera.

Custom command 1	Apri cancello	Executes:	D1P100
Custom command 2	Luci esterne ON	Executes:	D2 ON
Custom command 3	Luci esterne OFF	Executes:	D2 OFF
Custom command 4	Temperatura	Executes:	A1?
Custom command 5	Clima ON	Executes:	D4 ON
Custom command 6	Clima OFF	Executes:	D4 OFF
Custom command 7		Executes:	
Custom command 8		Executes:	

Esempio:

desidero utilizzare la V31GSM per comandare via SMS l'apertura di un cancello elettrico, attuabile attraverso l'impulso di un secondo sul relè numero 1. Secondo la tabella dei comandi standard, l'SMS che dovrei inviare sarebbe: D1P100. Tuttavia sarebbe molto più semplice comandare il cancello con l'SMS "APRI CANCELLO". Nella maschera Custom Commands Config imposterò:

Custom Command SMS	Executes	Descrizione
Apri cancello	D1P100	Apertura cancello con impulso relè durata un secondo
Luci esterne ON	D2 ON	Attivazione relè funzione bistabile D2 in posizione ON
Luci esterne OFF	D2 OFF	Spegnimento luci esterne funzione relè bistabile D2 in posizione OFF
Temperatura	A1?	Richiesta valore temperatura ambiente sensore A1 (ADC1)
Clima ON	D4 ON	Avvio l'impianto di climatizzazione relè bistabile D4 in posizione ON
Clima OFF	D4 OFF	Disattivo l'impianto di climatizzazione relè bistabile D4 in posizione OFF

Event Config

Permette di configurare i 8 eventi personalizzabili della scheda V31GSM. Ogni evento è caratterizzato da:

- Un flag di enable per la sua attivazione/disattivazione
- Un evento "trigger" che fa scattare l'evento, che può essere un fronte di salita o di discesa di un ingresso analogico o di un ingresso digitale
- Nel caso il fronte sia rilevato su un ingresso analogico, è possibile impostare una soglia personalizzata ed una eventuale isteresi per evitare trigger multipli
- Una azione conseguente al trigger dell'evento, che può essere:
- a) L'invio di un SMS con messaggio personalizzato ai numeri di telefono etichettati come "Master"
- b) L'esecuzione di un comando (standard o personalizzato)

Esempio:

utilizzando il sensore di temperatura citato nell'esempio precedente (collegato all'ingresso analogico 1), voglio azionare una spia di allarme (collegata al relè 4) e mandare una segnalazione SMS se la temperatura misurata supera la soglia dei 35°C. Imposterò i seguenti eventi:

- EVENTO 1 = comando accensione spia
- Event Enable: flagged
- Channel: 1 (canale del sensore)
- Type: analog, rising
- Analog threshold: 35
- Analog hysteresis: 2 (utile per evitare fastidiosi trigger multipli)
- Effect: Execute Command
- CMD/SMS: "D4 ON"

• EVENTO 2 = invio SMS

- Event Enable: flagged
- Channel: 1 (canale del sensore)
- Type: analog, rising
- Analog threshold: 35
- Analog hysteresis: 2 (utile per evitare fastidiosi trigger multipli)
- Effect: Send SMS to master numbers
- CMD/SMS: "Warning! Temp1"

Event Enable Channel 1	Analog	Rieina	Event Enable Ch	annel 5	Diaital	Rieina
	Allolog	rearing			Digital	Tuonig
Analog threshold 35	Analog hysteresis	2	Analog threshold 0		Analog hysteresis	0
Execute command	CMD/SMS D4 ON		Execute command	•	CMD/SMS	
Event 2			Event 6			
🔽 Event Enable Channel 1 🚔	Analog 👻	Rising	Event Enable Cha	annel 6 🚔	Digital 👻	Rising
Analog threshold 35	Analog hysteresis	2	Analog threshold 0		Analog hysteresis	0
Send SMS to master numbers 🔹	CMD/SMS "Wamin	ig! Temp1"	Execute command	•	CMD/SMS	
Event 3			Event 7			
🔄 Event Enable Channel 3 🌧	Digital 👻	Rising	Event Enable Cha	annel 7 🚔	Digital -	Rising
Analog threshold 0	Analog hysteresis	0	Analog threshold 0		Analog hysteresis	0
Execute command 🔹	CMD/SMS		Execute command	•	CMD/SMS	
Event 4			Event 8			
📃 Event Enable Channel 4 🚔	Digital 👻	Rising	Event Enable Cha	annel 8 🌲	Digital 👻	Rising
Analog threshold 0	Analog hysteresis	0	Analog threshold 0		Analog hysteresis	0
Execute command	CMD/SMS		Execute command	•	CMD/SMS	

V31 GSM Engine Configuration Tool

L'applicazione permette di il telecontrollo di un gruppo elettrogeno o apparecchiatura similare. Per questo tipo di funzione è necessario richiedere il firmware V31GSMEngine V3. All'apertura del configuration tool, portarsi prima sul <u>SIM and numbers Config</u>ed eseguire le predisposizioni come illustrato precedentemente.

Portarsi poi su Engine Start Config e predisporre le funzioni di Start e Stop del gruppo elettrogeno:

Veix V31 GSM Configuration	COM Name: COM62 COM Status: Connected Linked: Connected	ae Engine_Config			
Basic Functions Config SIM and numbers Config	Custom Command Config Events Config	Procedure control Figure Engine handle enable Mode Send alarm to Battery low voltage thr (AN1) 00	Manual Masters+Users	Warm up time (s) Starter time (s) Max starting attempts Failed attempt delay. (c)	4 3 10
Custom Engine s	tart config	Battery hiv voltage thr (AV1) (V) Battery hi voltage thr (AN1) (V)	-3,45	Failed attempt delay (s) Temperature sensor voltage thr (V) Defau	ьо -1 t ОК

Questa applicazione prevede che il gruppo elettrogeno si avvii automaticamente se il valore di tensione delle batterie di backup del sistema elettrico locale, scende al di sotto del valore di soglia tensione impostato. Una volta che il gruppo ha ricaricato le batterie, il sistema automatico di controllo provvede a fermare il gruppo, che si porterà in condizione di attesa, St-By.

Saranno predisposte le seguenti funzioni:

Funzioni	Azione	Note
Engine handle enable	Abilita il sistema	Spuntare il flag sempre
Mode	Manuale o Automatico	Se manuale il sistema alla prima alimentazione si
Conicl clause to	In it was a set of the CMC	
Serial alarm to	Invio messaggio Sivis	Invia SMS di avviso al Master - User oppure
Battery low voltage*	Imposta il valore V-low	E il valore d'intervento in cui il sistema fa partire
	di AN1	il gruppo elettrogeno (motorino avviamento)
Battery hi voltage*	Imposta il valore V-high	È il valore d'intervento in cui il sistema ferma il
	di AN1	gruppo elettrogeno (Chiusura valvola solenoide)
Warm up time	Imposta il tempo di	Periodo di tempo assegnato per il preriscaldo
	preriscaldo	delle candelette di prima accensione (0-255s)
Starter time	Azionamento del	Periodo di tempo assegnato per l'azionamento
	motorino di avviamento	del motorino d'avviamento (0-225s)
Max starting attempts**	Ripetizione avviamento	Permette di impostare quanti cicli di avviamento
		sono ammessi
Failed attempts	Tempo di pausa tra	Imposta il periodo di attesa tra un avviamento e
	avviamenti successivi	il successivo

* La lettura della tensione di taratura del sistema si esegue direttamente sul pin A0 del modulo Nano ** Se il gruppo non parte al primo tentativo, si può ripetere lo start dopo una pausa di n secondi

V31 GSM Engine Configuration Tool

In Event Config sono stati programmati due eventi:

- Event 1-Ch1 invia un messaggio SMS al Master quando il gruppo è in stato STOP
- Event 2-Ch1 invia un messaggio SMS al Master quando il gruppo è in stato RUN

Possono essere programmati altri eventi per inviare SMS di allarme per basso livello olio, basso livello carburante, alta temperatura acqua di raffreddamento, incendio, ecc.

Event 1		Event 5	
🔽 Event Enable Channel 1 🚔	Digital 🔹 Rising 👻	Event Enable Channel 5 🚔	Digital 🔻 Rising
Analog threshold 0	Analog hysteresis 0	Analog threshold 0	Analog hysteresis 0
Send SMS to master numbers 🔹	CMD/SMS ENGINE STOP	Execute command	CMD/SMS
Event 2		Event 6	
V Event Enable Channel	Digital	Event Enable Channel 6 🜩	Digital 🔹 Rising
Analog threshold 0	Analog hysteresis 0	Analog threshold 0	Analog hysteresis 0
Send SMS to master numbers 🔹	CMD/SMS ENGINE RUN	Execute command	CMD/SMS
Event 3		Event 7	
Event Enable Channel 3 🚔	Digital 🔹 Rising 💌	Event Enable Channel 7 ≑	Digital 🔹 Rising
Analog threshold 0	Analog hysteresis 0	Analog threshold 0	Analog hysteresis 0
Execute command 🔹	CMD/SMS	Execute command	CMD/SMS
Event 4		Event 8	
🖹 Event Enable Channel 4 🚔	Digital 🔹 Rising 👻	Event Enable Channel 8 🚖	Digital 🔻 Rising
Analog threshold 0	Analog hysteresis 0	Analog threshold 0	Analog hysteresis 0
Execute command 🗸	CMD/SMS	Execute command	CMD/SMS

Esempio applicativo controllo di un gruppo elettrogeno

Questo esempio applicativo riguarda la gestione di un gruppo elettrogeno, comandato a distanza, in zona non sorvegliata, dislocato a numerosi chilometri dal centro di controllo. Per garantire il funzionamento dell'apparecchiatura in condizione di massima sicurezza, anche in caso di guasto del sistema elettronico GSM, il committente ha richiesto accorgimenti elettrici di sicurezza aggiunti che permettono interventi automatici di Stop del motore diesel, principalmente in caso di bassa pressione olio lubrificante. Un circuito ausiliario, realizzato volutamente con componenti tradizionali, non permette il ravviamento del gruppo elettrogeno (Start) se questi è già in funzione. È realizzato con un timer 555 che esclude i contatti Start e Preriscaldo, alcuni secondi dopo che il gruppo è avviato (Stato del pressostato Olio ON)

Inoltre, in caso di bassa pressione olio dopo lo Start, interviene il relè ausiliario RL5 che aprendo il suo contatto non permette l'ulteriore alimentazione dell'elettrovalvola carburante, provocando il conseguente Stop del motore diesel (il contatto RL4-2, NA, interviene soltanto nella fase di Start per pochi secondi).

Schema elettrico azionamento elettrovalvola carburante

Il relè ausiliario RL4 di bassa pressione olio è sempre alimentato in condizione motore Stop. Funziona con "logica invertita": 1 logico con pressostato a massa (bassa pressione), 0 logico con pressostato aperto (alta pressione). Un configuratore Pull-UP /Pull-Down permette di scegliere quale tipo segnale si desidera inviare all'MCU. Il software considera una serie di segnali provenienti dal campo e decide, in caso di incongruenza, lo STOP del gruppo elettrogeno, inviando i relativi segnali SMS di allarme al centro di controllo.

Installazione su gruppi di irrigazione

Possibilità di comandare fino a 6 pompe dislocate nello stesso impianto

Ventilazione ambientale forzata

Il modulo V31GSM, permette l'avviamento a distanza di sistemi di ventilazione in ambienti civili, industriali, allevamenti, permettendo l'estrazione di fumo e odori.

Home automation

Il controller permette la gestione dei seguenti impianti:

- Illuminazione interna ed esterna
- Impianto di climatizzazione
- Controllo temperatura
- Controllo apertura porte (Cancello)
- Apertura porte garage
- Sistema di allarme

L'interfaccia v31 non richiede necessariamente una APP per il suo funzionamento. Tuttavia, chi desidera impiegare un'interfaccia grafica, friendly, di immediata praticità, consigliamo l'APP iRemote GSM PRO.

Usiamo iRemote GSM PRO

iRemote GSM PRO permette di gestire qualsiasi interfaccia GSM che accetti comandi tramite messaggi SMS. L'App dispone di tre tasti dedicati al sistema di sicurezza, oltre 20 tasti liberamente configurabili, attraverso stringa di comando da istruire al momento della configurazione del sistema. L'app è utile per il controllo di impianti domotici, controllo accessi, accensione luci, apertura cancelli, riscaldamento, condizionamento, attraverso messaggi SMS pre-configurati.

Come funziona

Il funzionamento si basa sull'invio e la ricezione di comandi tramite messaggi SMS inviati al dispositivo GSM. Sono previsti solo i costi per l'invio e l'eventuale ricezione dei messaggi in dipendenza dai piani tariffari adottati. I dati personali non sono in nessun modo raccolti o utilizzati al di fuori del dispositivo utilizzato. Nello schermo principale saranno visualizzate tutte le informazioni gestionali e i messaggi di risposta dei dispositivi controllati.

Dove acquistare l'App iRemote GSM PRO

L'app è disponibile su Google Play. Basta scrivere, nel riquadro di ricerca di Google Play il nome dell'app, per procedere all'acquisto ed installazione. Considerate che l'app è installabile su tutti i dispositivi Android di vostra proprietà, acquistandola una sola volta, a condizione di impiegare per il download sempre lo stesso account Google. Ad esempio: vostronome@gmail.com

Procedure di programmazione

Si ricorda, brevemente, prima di ogni immissione dei dati che il modulo GSM deve essere abilitato preventivamente a ricevere i comandi dal numero Master o dai numeri USER. I primi tre pulsanti sono dedicate alla gestione di un sistema di allarme, ma possono essere utilizzati per qualsiasi altro impiego. Gli altri 20 pulsanti sono programmabili per le altre funzioni. Per ottenere il telecontrollo del un sistema è necessario inserire le stringhe di comando come specificato nel manuale utente della V31.

Aprire il pannello di controllo di iRemote e azionare il tasto SETUP

Si apre il pannello di controllo da cui potrete operare per l'inserimento dei codici necessari al funzionamento del controllore GSM. Nel primo riquadro, spuntando gli appositi FLAG, potrete:

- Richiedere l'immissione di una password per l'uso dell'app.
- Richiedere le notifiche di pop-up.
- Richiedere la rimozione degli SMS in arrivo.

Se optate per l'immissione di una password, al momento di impiegare l'app, dovrete immettere lo stesso codice di sblocco impiegato per il telefono in uso.

Pulsanti grafici antifurto

Questi pulsanti permettono l'attivazione o lo spegnimento di un sistema di allarme, o di qualsiasi altra apparecchiatura elettrica di sicurezza a cui è collegato il vostro controllore remoto GSM. Per azionare un comando è necessario insistere sul pulsante di attivazione per un secondo.

LOG SMS 3/3 Remote GSM PR Invia #40#1# al +393711530 Premi per un secondo per eseguire

Disattiva i contatti dell'antifurto con l'invio di un SMS

Attiva i contatti dell'antifurto con l'invio di un SMS

Stringa esempio di comando attivazione antifurto:

- D0 ON attivazione
- D0 OFF disattivazione

Numero di telefono di default

È il numero di telefono corrispondente al modulo GSM. Nel nostro esempio il numero è +393402455000xxx Nella configurazione dei pulsanti, non sarà necessario ripetere la numerazione telefonica se l'invio del comando interessa un'unica postazione GSM

6	Setup Salva	Warning	
Pulsanti grafici - Antifurto stringa di comando		iRemote GSM PRO Sending +393402455000a SMS,	
	D0 ON	which may be malicious fee- sucker. Would you like to send the message?	
	D0 OFF		
Default Tel N°	+393402455000	SMS content:D0 ON	
	es: +11222333333 niente spazi o altri caratteri		
Default Tel N°: Utilizzato come default se non specificato nei pulsanti qui sotto		Send Cancel (5s) Report	

Si noterà che la stringa di comando del primo pulsante arancione, relativo al comando parziale dell'antifurto, non è stata configurata. Se il telecontrollo è dotato di questa opzione, potrete programmare anche questo pulsante.

Messaggio di Warning

Il messaggio di allerta "Warning" mette a disposizione dell'operatore una finestra di tempo, della durata di sette secondi, per l'eventuale annullamento del comando. In questo termine l'operatore può cancellare l'invio, diversamente, il comando è inoltrato al telecontrollo.

